
A Declarative API for Particle Systems
PADL 2011

Pavel Krajcevski (Disney Interactive Studios)
John Reppy (University of Chicago)

January 25, 2011



Introduction

Background

Recent trends in Computer Graphics hardware (GPUs) and APIs (e.g.
OpenGL) have significantly changed the way high-performance graphics
applications are written.

I geometric data is communicated in bulk using buffers, instead of
per-vertex.

I rendering behavior is controlled by shader programs running on the
GPU, instead of by a state machine.

I shader programs are compiled at runtime in the GPU driver.

These trends create an opportunity for high-level languages and declarative
approaches.

January 25, 2011 A Declarative API for Particle Systems 2



Introduction

Background

Recent trends in Computer Graphics hardware (GPUs) and APIs (e.g.
OpenGL) have significantly changed the way high-performance graphics
applications are written.

I geometric data is communicated in bulk using buffers, instead of
per-vertex.

I rendering behavior is controlled by shader programs running on the
GPU, instead of by a state machine.

I shader programs are compiled at runtime in the GPU driver.

These trends create an opportunity for high-level languages and declarative
approaches.

January 25, 2011 A Declarative API for Particle Systems 2



Introduction

Background

Recent trends in Computer Graphics hardware (GPUs) and APIs (e.g.
OpenGL) have significantly changed the way high-performance graphics
applications are written.

I geometric data is communicated in bulk using buffers, instead of
per-vertex.

I rendering behavior is controlled by shader programs running on the
GPU, instead of by a state machine.

I shader programs are compiled at runtime in the GPU driver.

These trends create an opportunity for high-level languages and declarative
approaches.

January 25, 2011 A Declarative API for Particle Systems 2



Introduction

Background

Recent trends in Computer Graphics hardware (GPUs) and APIs (e.g.
OpenGL) have significantly changed the way high-performance graphics
applications are written.

I geometric data is communicated in bulk using buffers, instead of
per-vertex.

I rendering behavior is controlled by shader programs running on the
GPU, instead of by a state machine.

I shader programs are compiled at runtime in the GPU driver.

These trends create an opportunity for high-level languages and declarative
approaches.

January 25, 2011 A Declarative API for Particle Systems 2



Introduction

Background

Recent trends in Computer Graphics hardware (GPUs) and APIs (e.g.
OpenGL) have significantly changed the way high-performance graphics
applications are written.

I geometric data is communicated in bulk using buffers, instead of
per-vertex.

I rendering behavior is controlled by shader programs running on the
GPU, instead of by a state machine.

I shader programs are compiled at runtime in the GPU driver.

These trends create an opportunity for high-level languages and declarative
approaches.

January 25, 2011 A Declarative API for Particle Systems 2



Introduction

Particle systems

Particle systems are a Computer Graphics technique for modeling fuzzy
phenomena [Reeves 1983], such as

I clouds, smoke, water, fire, explosions, etc. (dynamic)
I hair, fur, grass, etc. (static)

In this work, we address real-time dynamic particle systems.

January 25, 2011 A Declarative API for Particle Systems 3



Introduction

Particle systems

Particle systems are a Computer Graphics technique for modeling fuzzy
phenomena [Reeves 1983], such as

I clouds, smoke, water, fire, explosions, etc. (dynamic)
I hair, fur, grass, etc. (static)

In this work, we address real-time dynamic particle systems.

January 25, 2011 A Declarative API for Particle Systems 3



Introduction

Particle systems

Particle systems are a Computer Graphics technique for modeling fuzzy
phenomena [Reeves 1983], such as

I clouds, smoke, water, fire, explosions, etc. (dynamic)
I hair, fur, grass, etc. (static)

In this work, we address real-time dynamic particle systems.

January 25, 2011 A Declarative API for Particle Systems 3



Introduction

Particle systems

Particle systems are a Computer Graphics technique for modeling fuzzy
phenomena [Reeves 1983], such as

I clouds, smoke, water, fire, explosions, etc. (dynamic)
I hair, fur, grass, etc. (static)

In this work, we address real-time dynamic particle systems.

January 25, 2011 A Declarative API for Particle Systems 3



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

In the beginning ...

January 25, 2011 A Declarative API for Particle Systems 5



Particle Systems

Fountain demo

DEMO

January 25, 2011 A Declarative API for Particle Systems 6



Particle Systems

Smoke demo

DEMO

January 25, 2011 A Declarative API for Particle Systems 7



Particle Systems

Defining particle systems

Particle systems can be specified in three parts:

1. The emitter, which specifies rules for generating new particles.

2. The physics, which specifies how the state of a particle evolves.

3. The renderer, which specifies how to render a particle.

Particles have a state, which includes attributes like position, velocity, color,
etc..

January 25, 2011 A Declarative API for Particle Systems 8



Particle Systems

Defining particle systems

Particle systems can be specified in three parts:

1. The emitter, which specifies rules for generating new particles.

2. The physics, which specifies how the state of a particle evolves.

3. The renderer, which specifies how to render a particle.

Particles have a state, which includes attributes like position, velocity, color,
etc..

January 25, 2011 A Declarative API for Particle Systems 8



Particle Systems

Defining particle systems

Particle systems can be specified in three parts:

1. The emitter, which specifies rules for generating new particles.

2. The physics, which specifies how the state of a particle evolves.

3. The renderer, which specifies how to render a particle.

Particles have a state, which includes attributes like position, velocity, color,
etc..

January 25, 2011 A Declarative API for Particle Systems 8



Particle Systems

Defining particle systems

Particle systems can be specified in three parts:

1. The emitter, which specifies rules for generating new particles.

2. The physics, which specifies how the state of a particle evolves.

3. The renderer, which specifies how to render a particle.

Particles have a state, which includes attributes like position, velocity, color,
etc..

January 25, 2011 A Declarative API for Particle Systems 8



Particle Systems

Defining particle systems

Particle systems can be specified in three parts:

1. The emitter, which specifies rules for generating new particles.

2. The physics, which specifies how the state of a particle evolves.

3. The renderer, which specifies how to render a particle.

Particles have a state, which includes attributes like position, velocity, color,
etc..

January 25, 2011 A Declarative API for Particle Systems 8



Particle Systems

Particle physics

The physics can be captured in an update function.
val update : state * float -> state option

Here is a simple example of particle-system physics code that would be
suitable for water droplets.
fun update ({pos, vel, life}, dt) =

if (life <= 0.0) then NONE
else if (#y pos <= 0.0) then NONE
else let
val vel = Vec3f.sub(vel, Vec3f.scale(dt, gravity))
val pos = Vec3f.add(pos, Vec3f.scale(dt, vel))
in
SOME{ pos = pos, vel = vel, life = life - dt }

end

But writing this code is tedious and it is not portable to other compute devices
(e.g., GPUs).

January 25, 2011 A Declarative API for Particle Systems 9



Particle-system combinators

Specifying a particle system

In this talk, we present a declarative approach to specifying particle systems
that uses combinators to define particle system behavior.

The specification is split into two steps.

The first step allows one to specify a device independent program consisting
of the emitter, physics, and renderer.
type program (* particle-system specification *)

val create : {emit: emitter, physics : action, render : renderer}
-> program

January 25, 2011 A Declarative API for Particle Systems 10



Particle-system combinators

Specifying a particle system (continued ...)

The second step is device dependent.
type exec (* executable program *)
type psys (* instance of an exec *)

val compile : Particles.program -> exec
val new : {exec : exec, maxParticles : int} -> psys
val step : {psys: psys, t : Time.time} -> unit
val render : psys -> unit

The application must choose a device-specific implementation of this
interface (e.g., CPU, GLSL, etc.).

January 25, 2011 A Declarative API for Particle Systems 11



Particle-system combinators

Variables

Particle systems are parameterized by variables, which can be bound to values
at three different times:

1. specification time (these are called constants)

2. per-instance

3. per-frame

We use phantom types to enforce type correctness.

val constf : Float.float -> Float.float var
val bindf : Float.float var * Float.float -> unit

January 25, 2011 A Declarative API for Particle Systems 12



Particle-system combinators

Domains

Domains [McAllister 2000] are an abstraction of a region in <n.
We use domains to specify the distribution of random points and vectors in
emitters (e.g., to specify initial velocity), and to specify effects and boundaries
of a particle system.
For example,

I a spherical velocity domain for specifying fireworks, and
I a plane to specify the ground.

Domains are parameterized by variables.

January 25, 2011 A Declarative API for Particle Systems 13



Particle-system combinators

Domains

Domains [McAllister 2000] are an abstraction of a region in <n.
We use domains to specify the distribution of random points and vectors in
emitters (e.g., to specify initial velocity), and to specify effects and boundaries
of a particle system.
For example,

I a spherical velocity domain for specifying fireworks, and
I a plane to specify the ground.

Domains are parameterized by variables.

January 25, 2011 A Declarative API for Particle Systems 13



Particle-system combinators

Domains

Domains [McAllister 2000] are an abstraction of a region in <n.
We use domains to specify the distribution of random points and vectors in
emitters (e.g., to specify initial velocity), and to specify effects and boundaries
of a particle system.
For example,

I a spherical velocity domain for specifying fireworks, and
I a plane to specify the ground.

Domains are parameterized by variables.

January 25, 2011 A Declarative API for Particle Systems 13



Particle-system combinators

Emitters

The emitter controls the creation of new particles according to several
parameters:

I the rate of new particle creation (range and distribution),
I the initial position, velocity, and color domains

January 25, 2011 A Declarative API for Particle Systems 14



Particle-system combinators

Actions

An action is an abstraction of a particle-state to particle-state function.

We compose actions to specify the physics of a particle system.

Actions include sequencing, conditionals, and state transformers.

For example, here is a specification of the simple physics for water droplets.
P.inside {

d = groundPlane,
thenStmt = P.sequence [P.accelerate gravityVec, P.move],
elseStmt = P.die

}

January 25, 2011 A Declarative API for Particle Systems 15



Implementation

Implementation overview

CPUGPU

compile

OpenCLGLSL

IR

program

optimization

new

create

January 25, 2011 A Declarative API for Particle Systems 16



Implementation

Optimizations

We perform a number of optimizations on the IR.

Emitter
Physics

Renderer

These include:
I useless-variable elimination
I constant folding
I jump elimination
I dead-code elimination

January 25, 2011 A Declarative API for Particle Systems 17



Implementation

Optimizations

We perform a number of optimizations on the IR.

Emitter
Physics

Renderer

These include:
I useless-variable elimination
I constant folding
I jump elimination
I dead-code elimination

January 25, 2011 A Declarative API for Particle Systems 17



Conclusion

Status

I System is available as part of the SML3d library.
I Combinators and IR optimizations are implemented.
I CPU-based IR interpreter is working (but is too slow for real-time).
I OpenCL implementation should be available soon.

January 25, 2011 A Declarative API for Particle Systems 18



Conclusion

Status

I System is available as part of the SML3d library.
I Combinators and IR optimizations are implemented.
I CPU-based IR interpreter is working (but is too slow for real-time).
I OpenCL implementation should be available soon.

January 25, 2011 A Declarative API for Particle Systems 18



Conclusion

Status

I System is available as part of the SML3d library.
I Combinators and IR optimizations are implemented.
I CPU-based IR interpreter is working (but is too slow for real-time).
I OpenCL implementation should be available soon.

January 25, 2011 A Declarative API for Particle Systems 18



Conclusion

Status

I System is available as part of the SML3d library.
I Combinators and IR optimizations are implemented.
I CPU-based IR interpreter is working (but is too slow for real-time).
I OpenCL implementation should be available soon.

January 25, 2011 A Declarative API for Particle Systems 18



Conclusion

Future work

I Allow user-defined state variables and generalize actions.
I Multiple emitters for a particle system.
I Particle-particle interactions (e.g., flocking, collisions, etc.).
I Apply this approach to other problems: e.g., shading and skeletal

animation.

January 25, 2011 A Declarative API for Particle Systems 19



Conclusion

Future work

I Allow user-defined state variables and generalize actions.
I Multiple emitters for a particle system.
I Particle-particle interactions (e.g., flocking, collisions, etc.).
I Apply this approach to other problems: e.g., shading and skeletal

animation.

January 25, 2011 A Declarative API for Particle Systems 19



Conclusion

Future work

I Allow user-defined state variables and generalize actions.
I Multiple emitters for a particle system.
I Particle-particle interactions (e.g., flocking, collisions, etc.).
I Apply this approach to other problems: e.g., shading and skeletal

animation.

January 25, 2011 A Declarative API for Particle Systems 19



Conclusion

Future work

I Allow user-defined state variables and generalize actions.
I Multiple emitters for a particle system.
I Particle-particle interactions (e.g., flocking, collisions, etc.).
I Apply this approach to other problems: e.g., shading and skeletal

animation.

January 25, 2011 A Declarative API for Particle Systems 19



Conclusion

Questions?

http://sml3d.cs.uchicago.edu

January 25, 2011 A Declarative API for Particle Systems 20


	Introduction
	Particle Systems
	Particle-system combinators
	Implementation
	Conclusion

