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Introduction

Background

Recent trends in Computer Graphics hardware (GPUs) and APIs (e.g.
OpenGL) have significantly changed the way high-performance graphics
applications are written.

I geometric data is communicated in bulk using buffers, instead of
per-vertex.

I rendering behavior is controlled by shader programs running on the
GPU, instead of by a state machine.

I shader programs are compiled at runtime in the GPU driver.

These trends create an opportunity for high-level languages and declarative
approaches.
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Introduction

Particle systems

Particle systems are a Computer Graphics technique for modeling fuzzy
phenomena [Reeves 1983], such as

I clouds, smoke, water, fire, explosions, etc. (dynamic)
I hair, fur, grass, etc. (static)

In this work, we address real-time dynamic particle systems.
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Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

What are particle systems?

I Real-time graphics uses triangles to model objects, which does not work
well for fuzzy objects that have irregular and dynamic shapes.

I Particle systems represent fuzzy objects as large collections of particles.
I The set of particles is dynamic with new particles being born and old ones

dying.
I Particles have a position and other attributes that evolve over time

according to a “physics” model.
I Particle systems are stochastic.

I Particle systems substitute quantity for quality.
I The physics model is iterative using Euler integration.
I Particles are usually rendered using simple primitives (points, lines, or

small polygons).

January 25, 2011 A Declarative API for Particle Systems 4



Particle Systems

In the beginning ...
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Particle Systems

Fountain demo

DEMO
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Particle Systems

Smoke demo

DEMO
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Particle Systems

Defining particle systems

Particle systems can be specified in three parts:

1. The emitter, which specifies rules for generating new particles.

2. The physics, which specifies how the state of a particle evolves.

3. The renderer, which specifies how to render a particle.

Particles have a state, which includes attributes like position, velocity, color,
etc..
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Particle Systems

Particle physics

The physics can be captured in an update function.
val update : state * float -> state option

Here is a simple example of particle-system physics code that would be
suitable for water droplets.
fun update ({pos, vel, life}, dt) =

if (life <= 0.0) then NONE
else if (#y pos <= 0.0) then NONE
else let
val vel = Vec3f.sub(vel, Vec3f.scale(dt, gravity))
val pos = Vec3f.add(pos, Vec3f.scale(dt, vel))
in
SOME{ pos = pos, vel = vel, life = life - dt }

end

But writing this code is tedious and it is not portable to other compute devices
(e.g., GPUs).
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Particle-system combinators

Specifying a particle system

In this talk, we present a declarative approach to specifying particle systems
that uses combinators to define particle system behavior.

The specification is split into two steps.

The first step allows one to specify a device independent program consisting
of the emitter, physics, and renderer.
type program (* particle-system specification *)

val create : {emit: emitter, physics : action, render : renderer}
-> program
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Particle-system combinators

Specifying a particle system (continued ...)

The second step is device dependent.
type exec (* executable program *)
type psys (* instance of an exec *)

val compile : Particles.program -> exec
val new : {exec : exec, maxParticles : int} -> psys
val step : {psys: psys, t : Time.time} -> unit
val render : psys -> unit

The application must choose a device-specific implementation of this
interface (e.g., CPU, GLSL, etc.).
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Particle-system combinators

Variables

Particle systems are parameterized by variables, which can be bound to values
at three different times:

1. specification time (these are called constants)

2. per-instance

3. per-frame

We use phantom types to enforce type correctness.

val constf : Float.float -> Float.float var
val bindf : Float.float var * Float.float -> unit
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Particle-system combinators

Domains

Domains [McAllister 2000] are an abstraction of a region in <n.
We use domains to specify the distribution of random points and vectors in
emitters (e.g., to specify initial velocity), and to specify effects and boundaries
of a particle system.
For example,

I a spherical velocity domain for specifying fireworks, and
I a plane to specify the ground.

Domains are parameterized by variables.
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Particle-system combinators

Emitters

The emitter controls the creation of new particles according to several
parameters:

I the rate of new particle creation (range and distribution),
I the initial position, velocity, and color domains
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Particle-system combinators

Actions

An action is an abstraction of a particle-state to particle-state function.

We compose actions to specify the physics of a particle system.

Actions include sequencing, conditionals, and state transformers.

For example, here is a specification of the simple physics for water droplets.
P.inside {

d = groundPlane,
thenStmt = P.sequence [P.accelerate gravityVec, P.move],
elseStmt = P.die

}
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Implementation

Implementation overview

CPUGPU

compile

OpenCLGLSL

IR

program

optimization

new

create
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Implementation

Optimizations

We perform a number of optimizations on the IR.

Emitter
Physics

Renderer

These include:
I useless-variable elimination
I constant folding
I jump elimination
I dead-code elimination
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Conclusion

Status

I System is available as part of the SML3d library.
I Combinators and IR optimizations are implemented.
I CPU-based IR interpreter is working (but is too slow for real-time).
I OpenCL implementation should be available soon.
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Conclusion

Future work

I Allow user-defined state variables and generalize actions.
I Multiple emitters for a particle system.
I Particle-particle interactions (e.g., flocking, collisions, etc.).
I Apply this approach to other problems: e.g., shading and skeletal

animation.
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Conclusion

Questions?

http://sml3d.cs.uchicago.edu
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